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Abstract

The key point in this paper is the introduction of elastic analytic functions. An elastic analytic function is a
function of the form u: C4C2 which is di�erentiable and satis®es equations which are analogous to the Cauchy±

Riemann equations of traditional complex analysis such that the following conditions hold: ®rst the real and
imaginary part of the ®rst complex component of u satisfy the Navier equation of plane elasticity, and second, the
derivative along a line of the real and imaginary part of the second complex component of u is proportional to the

applied tractions along that line. Algebraical operations have been de®ned on elastic analytic functions such that
they constitute a commutative algebra over the real ®eld and a module over the set of analytic functions. Next, a
derivative and an integral of elastic analytic functions are introduced such that they behave in a similar way to

complex di�erentiation and integration of analytic functions, in particular we have properties such as: the integral
of an elastic analytic function around a contour is zero, a Cauchy-like integral formula and Plemelj-like formulae.
These properties can be very useful in tackling problems of plane elasticity involving cracks through the boundary
element method. It is also proved that path independent integrals in plane elasticity that are derived from Noether's

theorem, whose integrand only depends on the position and gradient of displacements, can be written as the integral
of an elastic analytic function. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Weight functions; Plane elasticity; Fracture mechanics; Boundary elements; Path independent integrals; Complex analy-

sis; Muskhelisavili potentials

1. Introduction

The usefulness of complex analysis in the resolution of problems governed by the Laplace equation,
for example antiplane elastostatic problems, is well known. The key point is that the real and imaginary
part of an analytic function in complex analysis satisfy the Laplace equation. If we are given a potential
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that satis®es the Laplace equation, we can always add its harmonic conjugate to build up an analytic
function and then solve a particular problem by using all the tools of complex analysis, for example:
Cauchy integral formula, analytic continuation, expansion in series, Hilbert problem, path independent
integrals, etc. Furthermore, the normal derivative of the potential, which is normally associated with
`load type' boundary conditions, is equal to the derivative of the harmonic conjugate along a line
(multiplied by ÿ1 depending on the conventions). For an example of how powerful this technique can
be, the reader is referred to two recent works by Atkinson and Aparicio (1994) and Aparicio and
Pidcock (1996).

The techniques of complex analysis can also be applied to solve plane elastostatic problems governed
by the Navier equations. This is normally done by writing the displacements and stresses as functions of
complex analytic potentials. The best known ways of doing this are probably those given by MacGregor
(1935), Westergaard (1939) and Muskhelishvili (1963). However, the analogy between the use of these
methods in plane elastostatic problems and the use of complex analysis in antiplane elastostatic
problems is apparently not obvious. For example, the displacements of a plane problem are not written
as part of an `analytic function' but a combination of analytic functions and their conjugates. This
brings a gap between the mathematical armoury associated with the complex potentials and the physical
interpretation of the problem. As an example, let us consider the Muskhelishvili potential c�z�: Since it
is an analytic function within the region where a plane elastic state exists, we can apply to it the Cauchy
integral formula or other tools of complex analysis, but what all that mean in relation to the plane
elastic problem itself is rather unclear. On the other hand, if we take the complex potential whose real
part is the solution of an antiplane problem in a particular region and apply to it the Cauchy integral
formula, then we have a weak Green's fundamental formula that will allow us, for example, to solve the
problem using the boundary element method.

The intention of this work is to construct a new complex analysis that will interact with plane
elastostatic problems in a manner that is similar to the interaction between normal complex analysis and
antiplane problems. For this reasons it is called elastic complex analysis to distinguish it from normal
complex analysis. Furthermore, the adjective `elastic' will be used throughout this paper to distinguish
the mathematical operations de®ned within elastic complex analysis from those of normal complex
analysis (i.e. elastic analytic function, elastic derivative, etc.).

In the same way that the key feature in the use of complex analysis in antiplane elastostatic problems
is the concept of an analytic function, the key feature in the use of elastic complex analysis in plane
elastostatic problems is the concept of an elastic analytic function. An elastic analytic function is a
function u: C4C2: The real and imaginary part of the ®rst complex component of an elastic analytic
function satisfy the Navier equations of plane elasticity, in other words, they work as the displacements
of an elastic state. The derivative of the real and imaginary part of the second complex component
along a line is proportional to the applied tractions.

The basic arithmetic operations will be de®ned such that the set of elastic analytic functions becomes
a commutative algebra over the real ®eld under these operations. This includes the fact that the sum and
product of elastic analytic functions are also elastic analytic functions. However, the set of elastic
analytic functions with the sum and product so de®ned will not be an integral domain unlike the set of
analytic functions. A division operation will also be introduced that will allow certain elastic analytic
functions to be inverted.

The product of elastic analytic functions has been introduced only as a formalism and has not been
proved so far to be very useful in practical applications. A more interesting tool is the product of an
elastic analytic function and an analytic function. Under this product the set of elastic analytic functions
is, in general, a module over the set of analytic functions (it is, however, an algebra over the integral
domain of analytic functions under a more restricted de®nition). Other useful tools are the elastic
derivative and its inverse the elastic integral. As in normal complex analysis, the elastic integral around
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a domain O of a function which is elastic analytic in O is zero. This property allows us to construct path
independent integrals. It will be proved that path independent integrals of the J type can be written as
the elastic integral of an elastic analytic function. A formula similar to the Cauchy integral formula will
also be introduced. As the Cauchy integral formula can be seen as a weak form of Green's fundamental
formula, this new integral can be seen as a weak form of Somigliana's integral formula which is widely
used in the resolution of elasticity problems through boundary elements. The equivalent of Plemelj
formulae for this new integral formula as well as a closed form inversion will also be studied as this can
be particularly useful in the resolution through boundary elements of plane elastostatic problems
involving cracks in the sense that it simpli®es the notation and procedure in the method employed in
Aparicio and Atkinson (1997). Finally, it will be seen that elastic analytic functions can also be
expanded in Taylor series and analytically continued. Indeed, they have most of the properties of
normal analytic functions.

2. Elastic analytic functions

The stresses and displacements of an elastic state can be written in terms of the Muskhelishvili
potentials f�z� and c�z� (Muskhelishvili, 1963) as

sxx � syy
2

� f 0�z� � f 0�z�

syy ÿ sxx
2

� isxy � zf 00�z� � c 0�z�

u � ux � iuy � 1

2G

h
kf�z� ÿ zf 0�z� ÿ c�z�

i
, �1�

where k � �l� 3G �=�l� G � is a real elastic constant greater than 1 and G > 0 and l > 0 are the Lame
constants.

We introduce the traction potential p de®ned by

p � 1

2G

h
f�z� � zf 0�z� � c�z�

i
: �2�

It is called traction potential because its derivative along a line L is proportional to the applied tractions

dp

ds
� i

2G

�
Tx�n� � iTy�n�

�
, �3�

where n is a unit vector orthogonal to L that has been obtained by rotating 908 clockwise a unit vector
tangent to L that points to the direction where the arc length s increases.

De®nition. A function u: C4C2 of the form u � �u, p� is an elastic analytic function in an open subset O
of C if it is di�erentiable in O and satis®es the following equations

@u

@ �z
� ÿ@p

@ �z
�4�
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@u

@z
� @ �u

@ �z
� k

@ �p

@ �z
ÿ @p
@z

�5�

Eqs. (4) and (5) can be regarded as the equivalent of Cauchy±Riemann equations of complex analysis.
They simply state that the Muskhelishvili potentials f�z� and c�z� must be analytic functions, i.e. their
partial derivative with respect to �z must vanish. From these equations we can obtain the conditions that
u and p must satisfy in order to be the components of an elastic analytic function. Di�erentiating Eq.
(5) with respect to �z and using Eq. (4), we obtain

ÿ @
2p

@z@ �z
� @

2 �u

@ �z2
� k

@2 �p

@ �z2
ÿ @2p

@z@ �z
: �6�

Di�erentiating Eq. (5) with respect to z and using Eq. (4) we obtain

@2u

@z2
ÿ @2 �p

@z@ �z
� k

@2 �p

@z@ �z
ÿ @

2p

@z2
: �7�

Subtracting the conjugate of Eq. (6) from Eq. (7) we ®nd, after some minor rearrangements

@2p

@z2
ÿ @2 �p

@z@ �z
� 0: �8�

By proceeding in a similar way but eliminating p rather than u, we obtain

@2u

@z2
� k

@2 �u

@z@ �z
� 0: �9�

Eq. (9) is actually the Navier equation of plane elasticity as can easily be seen if it is rewritten as

@

@z
Re

�
@u

@z

�
� kÿ 1

2

@2 �u

@z@ �z
� 0

and we use the following relationships

@

@z
� 1

2

�
@

@x
ÿ i

@

@y

�

Re

�
@u

@z

�
� 1

2
r � �ux, uy� @2

@z@ �z
� 1

4
r2:

In order to simplify the notation in the forthcoming sections, the following matrices have been
introduced

A1 � 1

1� k

�
k k
1 1

�
, A2 � 1

1� k

�ÿ1 k
1 ÿk

�
, A3 � 1

1� k

�
1 1
ÿ1 ÿ1

�
These matrices have the following multiplication table

A2
1 � A1 A1A2 � 0 A1A3 � 0

A2A1 � 0 A2
2 � ÿA2 A2A3 � ÿA3

A3A1 � A3 A3A2 � 0 A2
3 � 0
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and also satisfy

A1 ÿ A2 � I,

where I is the identity matrix.
If u is an elastic analytic function, then the following relationships hold

A1
@u

@ �z
� 0, A3

@u

@ �z
� 0 �10�

A3
@u

@z
ÿ A2

@ Åu

@ �z
� 0: �11�

If u1 � �u1, p1� and u2 � �u2, p2� are elastic analytic functions and a and b are real numbers, then it is
clear that

au1 � bu2 � �au1 � bu2, ap1 � bp2 �
is also an elastic analytic function (i.e. it satis®es Eqs. (4) and (5)). The set of elastic analytic functions
therefore constitutes a vector space over the real ®eld with the usual operations of addition and
multiplication by scalars.

3. The product between an elastic analytic function and an analytic function

De®nition. Let O be an open subset of C, u an elastic analytic function in O, f an analytic function in O
and z0 a complex number. The translated product between u and f with respect to z0 is de®ned asÿ

u�z
z0
f
��z, �z� �

ÿ
A1f�z� ÿ A2f�z�

�
u�z, �z� ÿ �zÿ z0�A3f 0�z�u�z, �z�: �12�

When the translated product is written as �z0 , we mean that it is applied to the same variable as that
used by the analytic function that follows it. In the particular case where z0 � 0 or f is a constant, we
will denote the product of an elastic analytic function and an analytic function as u� f:

The following properties can be veri®ed using the multiplication table for Ai matrices

1. u�z0 f is elastic analytic in O:
2. If u1 and u2 are elastic analytic functions in O then

�u1 � u2� �z0 f � u1 �z0 f� u2 �z0 f

3. If f1 and f2 are analytic functions in O then

u�z0 �f1 � f2� � u�z0 f1 � u�z0 f2:

4. u� 1 � u
5. If f and g are analytic functions in O, thenÿ

u�z0 f
��z0 g � �u�z0 g� �z0 f � u�z0 �fg�:
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6. From the above property we have, in particular, that if f is an analytic function in O that does not
vanish anywhere in O and u� � u�z0 f then

u � u� �z0

�
1

f

�
7. If a and b are real numbers then

�au� �z0 �bf� � �ab�
ÿ
u�z0 f

�
Properties 1 to 5 establish that the set of elastic analytic functions is a module over the set of analytic
functions.

If u is an elastic analytic function, there is an elastic state associated with it with Muskhelishvili
potentials f�z� and c�z�: Since u�z0 f is also elastic analytic, we can associate to it Muskhelishvili
potentials f��z� and c��z�: Eq. (12) must therefore relate f� and c� to f, c and the analytic function f.
After some manipulation, it can be proved that these relationships are

f��z� � f�z�f�z�, c��z� � f�z�c�z� ÿ z0f
0�z�f�z�:

Properties 5 and 6 above can be proved more easily using these relationships between Muskhelishvili
potentials. Notice that when z0 � 0, the mathematical meaning of this operation is simply the
multiplication by f of the Muskhelishvili potentials associated with u.

4. The elastic derivative and elastic integral of an elastic analytic function

De®nition. Let O be an open subset of C and u an elastic analytic function in O: We de®ne the elastic
derivative of u with respect to z as

eu

ez
� i

�
A1
@u

@z
� A2

@u

@ �z

�
: �13�

The elastic derivative has the following properties:

1. eu=ez is elastic analytic in O:
2. If a and b are real numbers and u1 and u2 are elastic analytic functions, then

e

ez
�au1 � bu2 � � a

eu1

ez
� b

eu2

ez
:

Notice that if a is a complex number and u is elastic analytic, au is not necessarily elastic analytic.
3. If z0 is a complex number and f is an analytic function in O, then

e

ez

ÿ
u�z0 f

� � eu

ez
�z0 f� u�z0

ÿ
if 0
�
:

4. If the elastic derivative of an elastic analytic function u is zero in an open set O, then u is a constant
in O:

Letting Eq. (13) equal to zero, we see that
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A1
@u

@z
� 0, A2

@u

@ �z
� 0:

Combining this result with Eqs. (10) and (11) we ®nd that both u� p and kpÿ u are constants and
therefore u is a constant in O: This means that the elastic derivative is a kind of total derivative rather
than a partial derivative when dealing with elastic analytic functions. This is similar to complex
di�erentiation of analytic functions.

The e�ect of the elastic derivative on the Muskhelishvili potentials associated with an elastic analytic
function is very simple. It simply di�erentiates the Muskhelishvili potentials associated with u and
multiplies them by i.

De®nition. If L is a recti®able curve in C (that is L is of bounded variation) and u is a function
u: C4C2, then the elastic integral of u along L is de®ned by�

L

u � dz � ÿi
�
L

�A1u dz� A2u d �z� A3 Åu dz�: �14�

The elastic integral has the following properties:

1. If a and b are real numbers, then�
L

�au1 � bu2� � dz � a

�
L

u1dz� b

�
L

u2 � dz

2. If L is a closed curve that surrounds a region O where u is elastic analytic, then�
L

u � dz � 0:

To prove this, it is su�cient to show that the integrand of the above expression is an exact
di�erential, that is

@

@ �z
�A1u� A3 Åu� � @

@z
�A2u�:

This is straightforward to prove using the ®rst equation in (10) and the conjugate of Eq. (11).
3. If O is an open subset of C where u is elastic analytic and L is an open recti®able curve in O, then�

L

eu

ez
� dz � Du,

where Du denotes the di�erence between the value of u at the ®nal point of L and the value of u at
the initial point of L according to the direction of integration. To prove this assumption, we simply
substitute Eq. (13) into Eq. (14). By using the multiplication table of the Ai matrices, we arrive at�

L

eu

ez
� dz �

�
L

�
A1
@u

@z
dzÿ A2

@u

@ �z
d �zÿ A3

@ Åu

@ �z
dz

�
:

Adding A1@u=@ �z � 0 and noting the conjugate of Eq. (11) we get
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�
L

eu

ez
� dz �

�
L

�
�A1 ÿ A2 �@u

@z
dz� �A1 ÿ A2�@u

@ �z
d �z

�

�
�
L

�
@u

@z
dz� @u

@ �z
d �z

�
� Du:

5. A Cauchy integral formula for elastic complex analysis

Theorem. If O is an open subset of C with boundary L, u is an elastic analytic function in O and z0 is a
complex number in O, then�

L

�
u�z, �z� �z

z0

�
1

zÿ z0

��
� dz � 2pu�z0, z0�, �15�

where the integral is carried out anticlockwise along L.

Proof. Let us consider a small circle LE of radius E centered at z0: Then, using the property of path
independence, we have�

L

�
u�z, �z� �z

z0

�
1

zÿ z0

��
� dz �

�
LE

�
u�z, �z� �z

z0

�
1

zÿ z0

��
� dz

0
�
LE

�
u�z0, z0� �z

z0

�
1

zÿ z0

��
� dz as E40�:

Rewriting this integral by substituting the de®nition of the translated product (12) into the de®nition of
the elastic integral (14) and using the multiplication table for the Ai matrices, we obtain�

LE

�
u�z0, z0� �z

z0

�
1

zÿ z0

��
� dz

� ÿ
�
LE

"�
A1 dz

zÿ z0
� A2 d �z

�zÿ z0

�
u�z0,z0� � A3u�zo, z0� d

�
zÿ z0
�zÿ z0

�#

�
�
A1�2p� ÿ A2�2p�

�
u�zo,z0� � 2pu�z0,z0�:
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6. Plemelj like formulae for elastic complex analysis

Theorem. Let L be a smooth line not intersecting itself and u: L4C2 a function of the form u � �u, p� such
that: both u and p satisfy the HoÈlder condition on L, u� p vanishes at the end points of L, is di�erentiable
on L and its derivative satis®es the HoÈlder condition on L. Then the following function is elastic analytic
everywhere in C except on L.

p�z0, z0� � 1

2p

�
L

u�z, �z� �z
z0

�
1

zÿ z0

�
� dz �16�

Proof. The function f�z� � 2G�u� p�=�1� k� vanishes at the end points of L, is di�erentiable on L and
its derivative satis®es the HoÈ lder condition on L. This means that the following functions are analytic
everywhere in C except on L

F�z0� � 1

2pi

�
L

f�z� dz
zÿ z0

, F 0�z0� � 1

2pi

�
L

f 0�z� dz
zÿ z0

� 1

2pi

�
L

f�z� dz
�zÿ z0�2

On the other hand, the function c�z� � 2G �pÿ �fÿ �zf 0 also satis®es the HoÈ lder condition on L and
therefore

C�z0� �
�
L

c�z� dz
zÿ z0

is also analytic in Cÿ L:
We introduce the following notation

R1�u, p� � u, R2�u, p� � p:

Substituting the expression of u � �u, p� in terms of its Muskhelishvili potentials (see Eqs. (1) and (2))
into the right-hand side of Eq. (16), we obtain

1

2p
R1

�
L

u�z, �z� �z
z0

�
1

zÿ z0

�
� dz

� 1

2G�2pi�
�
L

"
kf

zÿ z0
dz� zf 0 � �c

�zÿ z0
d �z� �f d

�
zÿ z0
�zÿ z0

�#

� 1

2G�2pi�
�
L

"
kf

zÿ z0
dz� z0f

0 � �c
�zÿ z0

d �z� d

�
�f
zÿ z0
�zÿ z0

�#

� 1

2G

�
kF�z0� ÿ z0F 0�z0� ÿC�z0�

�
:
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Similarly

1

2p
R2

�
L

u�z, �z� �z
z0

�
1

zÿ z0

�
� dz � 1

2G

�
F�z0 � � z0F 0�z0 � �C�z0�

�
:

Thus, p�z0, z0� is the elastic analytic function associated with the Muskhelishvili potentials F�z0� and
C�z0�:

Theorem. Let L be a simple smooth oriented curve, let z0 be a point on L, let uj � �uj, pj � be a function
uj: L4C satisfying the HoÈlder condition on L such that u� p vanishes at the end points of L, is
di�erentiable on L and its derivative satis®es the HoÈlder condition on L. Then if U��z0, z0� and Uÿ�z0, z0�
are, respectively, the limits of

U�z1, z1� � 1

2p

�
L

uj�z, z� �z
z1

�
1

zÿ z1

�
� dz

as z1 approaches z0 on the left and right of L respectively, we have

ua�z0, z0� � U��z0, z0� � Uÿ�z0, z0�
2

� 1

2p
PV

�
L

uj�z, z� �z
z0

�
1

zÿ z0

�
� dz,

uj�z0, z0� � U��z0, z0 � ÿ Uÿ�z0, z0� �17�

where PV means that the integral must be interpreted in the sense of its Cauchy principal value.

Proof. The proof can be carried out in a similar way to the previous theorem by taking into account
Plemelj formulae (Muskhelishvili, 1958)

F��z0� � Fÿ�z0�
2

� 1

2pi
PV

�
L

f�z� dz

zÿ z0
,

F��z0� ÿ Fÿ�z0 � � f�z0�:

Eq. (17) can be inverted in closed form in a similar way as for complex functions in Muskhelishvili
(1958). We simply state here the result (see Appendix A for a complete proof).

uj�z0, z0� � 2

p

�
PV

�
L

ÿ
ua�z, z� �z g��z�

��z
z0

�
1

zÿ z0

�
dz

�
�z0

1

g��z0 �

�A�z0
1

g��z0� , �18�

where A is a constant in C2 and g��z� the limit of the function g�z�
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g�z� � �zÿ z2�
�������������
zÿ z1
zÿ z2

s

as z approaches a point z on L on the left. In the above formula the branch cut is chosen along L and
z1, z2 are the initial and ®nal points of L, respectively.

Eq. (17) can be seen as the superposition of two cases by making uj � uj1 � uj2, where R2uj1 � 0 and
R1uj2 � 0 on L. The ®rst case corresponds to a distribution of dislocations along L which produces
stresses that are continuous across L. The second case corresponds to a distributed load and therefore
displacements are continuous across L. These cases were already studied by Aparicio and Atkinson
(1997) in the determination of weight functions for curved cracks.

Eq. (17) can be very useful in the resolution of plane elastostatic problems involving cracks. Only two
of the four components of Eq. (17) need to be considered when constructing the system of equations.
The choice of which complex component is more appropriate will depend on which complex component
of ua can be written in terms of either the variables of the problem or known quantities. For external
boundaries, either u or p will be appropriate as nodal variables depending on the boundary conditions;
while along cracks, where stresses are known, uj � u� ÿ uÿ will be a better choice for nodal variables,
and the second complex component of Eq. (17) should be considered. After the system of equations has
been solved, then Eq. (17) can be used again to determine either u� or uÿ along cracks. Notice that Eq.
(17) only needs to be evaluated once at each node along the crack.

This approach to solving elastostatic problems has an advantage and a disadvantage. The
disadvantage is that the traction potential is the integral of the tractions and therefore has an unknown
constant involved that must be included in the list of nodal variables. There is a constant for each
disjointed boundary in the problem (including cracks as part of the boundaries). It is a worthy task to
®gure out the best ways this constant can be included into the system of equations. Since the number of
these constants is probably much smaller than the number of nodal variables, its main drawback is not
that it is adding more equations into the system, but rather that we must ®nd the most appropriate
equations to include them. Work dealing with these constants have already been published (see Chen,
1993 for example).

The advantage of using Eq. (17) to solve elastostatic problems numerically is that (17) is a singular
integral equation with a Cauchy type kernel whose singularity is straight forward to remove, namely

PV

�
L

uj�z, �z� �z
z0

�
1

zÿ z0

�
� dz � PV

�
L

ÿ
uj�z, �z� ÿ uj�z0, z0 �

��z
z0

�
1

zÿ z0

�
� dz

�PV

�
L

uj�z0, z0� �z
z0

�
1

zÿ z0

�
� dz, �19�

where L is for example a boundary element. The ®rst integral on the right-hand side of Eq. (19) is non-
singular, the second integral can be evaluated in closed form. If

q2�z0, z0� �
�
L

e

ez

�
uj�z0, z0 � �z

z0

ÿÿ iln2�zÿ z0�
�� � dz

� D
�
uj�z0, z0� �z

z0

�ÿ iln2�zÿ z0�
�	
, �20�

where ln2 means the logarithm has the branch cut on the 2 side of L, so the branch cut does not
intersect L in Eq. (20) as z0 is also on the 2 side of L. Then the last integral in Eq. (19) will be equal to
�q� � qÿ�=2: Since
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Dln��zÿ z0� ÿ Dlnÿ�zÿ z0� � 2pi,

this result can be written in terms of one kind of logarithm (see Aparicio and Atkinson, 1997 for more
details in a numerical implementation of this procedure).

Another alternative that has appeared in the literature is integrating Eq. (17) by parts. This is possible
because

e

ez

�
uj�z, z� �z

z0

ÿÿ iln2�zÿ z0�
�� � �euj�z, �z�

ez
�z

z0

ÿÿ iln2�zÿ z0�
���

�uj�z, �z� �z
z0

�
1

zÿ z0

�
:

Then the unknown is associated with eu=ez (which means that a condition of closure of the crack is
needed) and the singularity is of a logarithmic type (see Chen and Cheung, 1994 and Chang and Mear,
1996 for recent works on this topic).

7. The product of two elastic analytic functions

As it was mentioned earlier, the product of two elastic analytic functions does not appear to have any
useful application and we merely introduce it here as a formalism. The aim is to de®ne a product
between two elastic analytic functions such that this product and the addition of elastic analytic
functions introduced previously constitute a commutative ring (this includes the fact that the product of
two elastic analytic functions is also an elastic analytic function); and the elastic derivative of the
product of two elastic analytic functions operates in a similar way to the derivative of the product of
two analytic functions.

Let f and c be two analytic functions. In order to simplify the notation, we de®ne�
f�z�, c�z�� � 1

2G

�
kf�z� ÿ zf 0�z� ÿ c�z�, f�z� � zf 0�z� � c�z�

�
:

In other words, �f, c� is the elastic analytic function associated with the Muskhelishvili potentials f and
c: We also have as a consequence of this that

u � 2G

�
R1�A3u�, R1

�
A2 Åuÿ zA3

�
@u

@z

���
:

De®nition. If u1 � �f1, c1� and u2 � �f2, c2� are two elastic analytic functions de®ned on the same open
subset of the complex plane and z0 is a complex number, then the translated product of these functions
is de®ned as

u1 �z0 u2 �
h
f1f2,

ÿ
c1 � z0f

0
1

�ÿ
c2 � z0f

0
2

�ÿ z0
ÿ
f1f2

� 0i
: �21�

The product of two elastic analytic functions satis®es the following properties:

1. The product and addition de®ned for elastic analytic functions constitute a commutative ring. The
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neutral element for the addition is 0 � �0, 0� and the neutral element for the product is 1� �kÿ 1,
2�=�2G � � �1, 1�:

2. e�u1 �z0 u2�=ez � �eu1=ez� �z0 u2�u1 �z0 �eu2=ez�:
3. �u1 �z0 u2� �z0 f � u1 �z0 �u2 �z0 f � � �u1 �z0 f � �z0 u2:

This last property proves that when the translated product � between two elastic analytic functions and
between an elastic analytic function and an analytic function is applied with the same complex number
z0, the set of elastic analytic functions forms an algebra over the integral domain of analytic functions.

De®nition. The transpose of an elastic analytic function u � �f, c� is de®ned as

uT �
h
c� z0f

0, fÿ z0
ÿ
c� z0f

0� 0i:

De®nition. The determinant of an elastic analytic function u � �f, c� is de®ned as

det�u� � f
ÿ
c� z0f

0�:

De®nition. The inverse of an elastic analytic function u � �f, c� is de®ned as

uÿ1 �
�
1

f
,

1

c� z0f
0 � z0f

0=f2

�
:

The following properties can easily be veri®ed

1. The transpose of an elastic analytic function is also an elastic analytic function. The determinant of
an elastic analytic function is an analytic function.

2. u�z0 uT � 1�z0 det�u�: From this property, we can conclude that if an elastic analytic function in O
has a determinant that does not vanish anywhere in O, then it has an inverse given by

uÿ1 � uT �z0

�
1

det�u�
�

which is also an elastic analytic function in O:
3. det�uT� � det�u�:
4. det�uÿ1� � 1=det�u�:
5. �uT�T � u:
6. �u�z0 f �T�uT �z0 f:
7. �u�z0 f �ÿ1�uÿ1 �z0 �1=f �:
8. �u1 �z0 u2�T�u1

T �z0 u2
T:

9. det�u1 �z0 u2��det�u1�det�u2�:
10. �u1 �z0 u2�ÿ1�uÿ11 �z0 u2

ÿ1:
11. If u � uT, then u can be written as u � 1�z0 f where f is an analytic function. In this case it is said

N.D. Aparicio / International Journal of Solids and Structures 37 (2000) 3873±3895 3885



that u is symmetrical. A typical example of a symmetrical elastic analytic function is

u�z0 uT:

12.

euT

ez
�
�
eu

ez

�T

:

13. euÿ1=ez � �eu=ez� �z0 �ÿuÿ2�:
The set of elastic analytic functions in a certain open subset O of the complex plane can also be written
as the direct sum of two principal ideals If and Ic generated by

1f � �1, 0�, 1c � �0, 1�,
respectively. We conclude this section by pointing out that the product of elastic analytic functions is
not an integral domain. If u1 �z0 u2 � 0, it does not necessarily mean that either u1 � 0 or u2 � 0:
However, if u1 has a non-vanishing determinant then it can be concluded from u1 �z0 u2 � 0 that u2 �
0:

8. Taylor expansions of elastic analytic functions

The property that elastic analytic functions can be expanded in Taylor series is a direct consequence
of the fact that Muskhelishvili potentials associated with it can be expanded in Taylor series. Let us
assume that an elastic analytic function u has an expansion

u�z, �z� �
X1
n�0

an �z
z0 �zÿ z0�n: �22�

Taking the elastic derivative n times and evaluating the resulting expression for z � z0, we obtain

enu

ezn
�z0, z0� � an � �n!in�:

Substituting the above expression into Eq. (22) we obtain the Taylor expansion of an elastic analytic
function

u�z, �z� �
X1
n�0

1

n!

"
enu

ezn
�z0, z0� �z

z0

�
zÿ z0

i

�n
#
:

9. Path independent integrals

The subject of path independent integrals in the theory of elasticity has interested the scienti®c
community working in the area since the introduction of the J (or Fl� integral by Eshelby (1956) and
Rice (1968). The main implication of this path independent integral lies in its interpretation as the `force
on a defect' and its link with the energy release rate and the stress intensity factor in cracks. GuÈ nther
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(1962) and Knowles and Sternberg (1972) derived two more path independent integrals by applying a
restricted version of Noether's theorem (Noether, 1918) to the equations of elasticity (see also Eshelby,
1975). Edelen (1981) correctly suggested that more path independent integrals could be derived from
variational principles in elastostatics. Olver, 1984a, 1984b proved that in three dimensions there is a
®nite number of non-trivial conservation laws depending on the position, displacement and its gradient,
while in two dimensions there is an in®nite number of families of independent symmetries and
conservation laws. Some of these path independent integrals were already derived by Tsamasphyros and
Theocaris (1982) using the property that analytic compositions of Muskhelishvili potentials are analytic
functions. For other works on path independent integrals, the reader is referred to Ioakimidis and
Anastasselou (1993), Dong (1994) and Aparicio and Atkinson (1997).

In the case of a two-dimensional elastostatic medium which is also linear homogeneous and isotropic,
Olver (1984a) and Olver (1984b) proved that all path independent integrals that depend only on the
derivatives of the displacements are of the form

A� � 2G�l� 2G�x@B
@Z
� �l� G�i �B� C, �23�

where A� is the complex density of the path independent integral, i.e. the integral is of the form�
@O

�
Re�A��nx � Im�A��ny

�
ds � Re

�
@O

iA� d �z � 0;

x is given by

x � 2
@u

@ �z
� ÿ 1

G

�
zf 00�z� � c 0�z�

�
,

Z is given by

Z � 2i�l� 2G�f 0�z�
l� G

,

and B and C are analytic functions of Z:
In order to write Eq. (23) in the same notation that has been used throughout this paper, we

introduce the functions

F1

ÿ
f 0
� � ÿ�l� G�B�Z�, F2

ÿ
f 0
� � ÿiC�Z�, A � iA�:

By substituting the above expression into Eq. (23) we obtain

A �
�
zf 00�z� � c 0�z�

�
F 01
ÿ
f 0
�� F1

ÿ
f 0
�� F2

ÿ
f 0
�
: �24�

It can easily be veri®ed that @A=@z is a real function and therefore, from Green's theorem in complex
form

Re

�
@O

A d �z � 2Im

�
O

@A

@z
dO

we obtain
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Re

�
@O

A d �z � 0: �25�

In the more general case where the symmetry conservation law is also allowed to depend on the
position, Eq. (24) becomes

A �
�
zf 00�z� � c 0�z�

�
@F1

ÿ
z, f 0

�
@f 0

� F1

ÿ
z, f 0

�� F2

ÿ
z, f 0

�� z
@F1

ÿ
z,f 0

�
@z

: �26�

Here, both F1�z, f 0 � and F2�z, f 0 � are analytic functions in each of their arguments.
It will be proved in the remaining part of this section that path independent integrals of the form Eq.

(25) with a complex density given by Eq. (26) can be written as the real or imaginary part of

R2

�
@O

u � dz � 0

where u is an elastic analytic function in O:
Since F1�z, f 0 � and F2�z, f 0 � are arbitrary analytic functions, without loss of generality, Eq. (26) can

be written as

A �
�
zf 00�z� � c 0�z�

�
@F1

ÿ
z, f 0

�
@f 0

� F1

ÿ
z, f 0

�� F1

ÿ
z, f 0

�� F2

ÿ
z, f 0

�� z
@F1

ÿ
z, f 0

�
@z

: �27�

We introduce the conjugate expression of Eq. (27)

Ay � ÿ
�
zf 00�z� � c 0�z�

�
@F1

ÿ
z, f 0

�
@f 0

� F1

ÿ
z, f 0

�� F1

ÿ
z, f 0

�ÿ F2

ÿ
z, f 0

�ÿ z
@F1

ÿ
z, f 0

�
@z

: �28�

It can easily be veri®ed that iAy is also the complex density of a path independent integral of the form
(25). In other words, we can construct a complex path independent integral

Re

�
@O

A d �z� iRe

�
@O

iAy d �z � 0:

Through elementary manipulations, the above integral can also be written as

�
@O

24 �A� Ay
2

!
dz�

 
Aÿ Ay

2

!
d �z

35 � 0:

Substituting Eqs. (27) and (28) into the above expression we obtain�
@O

(ÿ
F1 � F1

�
dz�

"�
zf 00 � c 0

�
@F1

@f 0
� F2 � z

@F1

@z

#
d �z

)
� 0: �29�

Let u be the elastic analytic function in O de®ned by

u � 2G

�
iF1, ic

0 @F1

@f 0
� iF2

�
: �30�

Substituting the above expression into Eq. (14) and comparing the result with Eq. (29), we conclude that
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Re

�
@O

A d �z� iRe

�
@O

iAy d �z � R2

�
@O

u � dz � 0: �31�

An immediate implication from this result is that conservation laws with a complex density of the form
(27) can be seen as the equilibrium condition of a `transformed' elastic state. If u is an elastic analytic
function in O and z0 a complex number in O, then we can de®ne another elastic analytic function p in O
as

p�z, �z� �
�z
z0

u
ÿ
z, �z

�
� dz

where the integral is carried along any path entirely contained in O which goes from zo to z. If u is
associated with a particular conservation law as described above, then Eq. (31) can be seen as the
equilibrium of forces in a closed subset of O associated with the elastic analytic function p.

10. The asymptotic behaviour of an elastic analytic function near a crack tip

Let us consider a crack with tip at z0 and whose tangent at its tip makes an angle a with respect to
the horizontal �a � 0 means the crack goes to the right of z0). The asymptotic behaviour of an elastic
analytic function near the crack tip is given by

u�z, �z�0u�z0, z0� � 1������
2p
p k�z

z0

������������
zÿ z0
p �32�

as z4zo: Here k is a constant function given by

k �
�
ÿ �KII � iKI�eia=2,

�
3

2
KII ÿ i

2
KI

�
eÿ3ia=2

�
where KI and KII are the mode I and II stress intensity factors, respectively. It can be veri®ed that Eq.
(32) leads to the well known asymptotic behaviour of an in-plane elastic state near a crack tip (Freund,
1990). The asymptotic behaviour of the Muskhelishvili potentials of an in-plane elastic state near the
crack tip of an inclined crack can be seen explicitly written in Aparicio and Atkinson (1997).

On the other hand, the J1 and J2 path independent integrals can be written in the form (27) and (28),
respectively by making

F1

ÿ
z, f 0

� � ÿ�1� k

4G

�
i
ÿ
f 0
�2
, F2

ÿ
z,f 0

� � 0:

Substituting the above expressions into Eq. (30), we obtain

u� � 1� k

2

hÿ
f 0
�2
, 2f 0c 0

i
� �1� k�Geu

ez

ÿ
1� 1c

�� �R2A3
eu

ez

�
, �33�

where u � �f, c�, and therefore

J1 � iJ2 � R2

�
L

u � dz � �1� k�GR2

�
L

eu

ez

ÿ
1� 1c

�� �R2A3
eu

ez

�
� dz:

From Eq. (32) we obtain that
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R2A3
eu

ez
� i�KII � iKI�eia=2

4G
������
2p
p ������������

zÿ z0
p , �34�

and

eu

ez

ÿ
1� 1c

� � 1

2
������
2p
p

"
ÿ i�KII � iKI �eia=2������������

zÿ z0
p ,

i�3KII ÿ iKI �eÿ3ia=2������������
zÿ z0
p ÿ iz0�KII � iKI�eia=2������������������

�zÿ z0�3
q 35: �35�

Substituting Eqs. (34) and (35) into Eq. (33) we obtain

u� � ÿ1� k

16p

�ÿ
K 2

I ÿ K 2
II ÿ 2iKIKII

�
eia,

ÿ
K 2

I � 3K 2
II � 2iKIKII

�
eÿia

��z
z0

�
1

zÿ z0

�
:

Integrating along any contour @O that surrounds z0 and applying the Cauchy integral formula (15), we
®nd the values of the Ji integral around a crack tip

J1 � iJ2 � R2

�
@O

u� � dz � ÿ1� k

8G

ÿ
K 2

I � K 2
II ÿ 2iKIKII

�
eia:

This formulation is consistent with the equation Ji � Gijmj where

m � � ÿ cos a, ÿ sin a�

is a unit vector tangent to the crack at its tip and pointing to the direction of crack advance and Gij is
the energy release rate tensor introduced by Atkinson and Aparicio (1999) which is de®ned by

G11 � G22 � 1� k

8G

ÿ
K 2

I � K 2
II

�

G12 � ÿG21 � 1� k

8G
�2KIKII �:

In the particular case where the crack is horizontal starting at its tip towards the left �a � p and m �
�1, 0�� and under mode I loading, we obtain the well-known formula for the value of J1 around the
crack tip.

J1 �
�1� k�K 2

I

8G

11. A fundamental solution for the determination of the stress intensity factor

The J integral described in the previous section has become very useful for the determination of the
stress intensity factor of a straight stress free crack in a symmetrical elasticity problem, but it is of little
help in the more general situation of a curved crack under mixed mode loading. Aparicio and Atkinson
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(1997) devised a fundamental solution that allows us to pick up the chosen stress intensity factor of a
curved internal or surface breaking crack under mixed mode loading when it is applied in conjunction
with Betti's reciprocal theorem. The fundamental solution will also allow us to determine the weight
function for a particular geometry by superimposing a simple crack solution which, in the most general
case, will need to be solved numerically. It will be shown in this section that, with the notation of elastic
complex analysis, the fundamental solution described in Aparicio and Atkinson (1997) has a simple and
natural form. It will also be shown that the calculations required to prove the properties of the
fundamental solution can be carried out easier with the notation of elastic complex analysis than with
the classical notation of the theory of elasticity.

The fundamental solution described in Aparicio and Atkinson (1997) has the following form in elastic
complex analysis

u1 � A�z
z0

�������������
zÿ z1
zÿ z0

r
ÿ �R1A, 0�, �36�

where A is a constant in C2 given by

A �
�
ÿ Ae3ia=2,

B

2
eÿia=2

�
,

a is the inclination of the tangent to the crack at its tip measured anticlockwise from the positive x axis
to the part of the tangent that points towards the crack; z0 is the complex form of the point at the crack
tip; z1 is the complex form of the point at the other extreme of the crack (where the stress intensity
factor is not of interest) or a point outside the body if the crack is a surface breaking crack; A and B
are given by

A � 2Gi������
2p
p �1� k�

J1 � iJ2��������������
z0 ÿ z1
p

B � 2Gi������
2p
p �1� k�

3J1 � iJ2��������������
z0 ÿ z1
p

and J1, J2 are arbitrary numbers. The square root in Eq. (36) is de®ned such that the branch cut runs
along the crack.

The objective is the evaluation of the integral

I � Re

�
@O

ÿ
u2T1 ÿ u1T2

�
ds

where the subindex 1 denotes the elastic state given in (36), the subindex 2 denotes the current elastic
state acting upon the medium, u � ux � iuy is the complex displacement and T � Tx � iTy is the complex
traction. The integral is carried out anticlockwise around the crack tip.

Since the above integral is path independent, we only need to calculate its value around a small circle
that surrounds the crack tip. In this situation, the current elastic state acquires the asymptotic behaviour
given by Eq. (32)

u2�z, �z�0u2�z0, z0 � � k������
2ppp
p �z

z0

������������
zÿ z0
p

:

Using Eq. (3) and integrating by parts (and using the fact that p1 � 0 on the crack faces as we approach
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the crack tip), Betti's reciprocal theorem can be written as

I � 2GIm

�
@O

�
u1

dp2
ds
ÿ p1

du2
ds

�
ds �37�

The derivatives involved in the above integral can be written in terms of the elastic derivative�
du2
ds

,
dp2
ds

�
� du2

ds
� eu2

ez
� dz

ds
,

where dz=ds � ieiy��r, y� is de®ned such that z � z0 � reiy� and, from the properties of the elastic
derivative,

eu2

ez
� k������

2ppp
p �z

z0

�
i

2
������������
zÿ z0
p

�
:

Using Eq. (12) and z � z0 � reiy, we obtain

eu2

ez
0 i�������

2pr
p

�
A1k

2
eÿiy=2 � A2k

2
eiy=2 ÿ A3

Åk

4
e5iy=2

�
as r40�: Substituting the above equation into

du2

ds
� eu2

ez
� dz

ds
� ÿi

�
A1

eu2

ez

dz

ds
� A2

eu2

ez

dz

ds
� A3

eu2

ez

dz

ds

�
and taking the complex conjugate, we obtain

du2

ds
0 i�������

2pr
p

�
ÿ A1k

2
eÿiy=2 ÿ A2k

2
eiy=2 � 3A3k

4
eÿ3iy=2

�
�38�

On the other hand, developing the translated product in Eq. (36) (which is given in Eq. (12)) we obtain

u1 � 1��
r
p
�
A1A

��������������
z0 ÿ z1
p

eÿiy=2 ÿ A2A
��������������
z0 ÿ z1
p

eiy=2 � A3A

2

��������������
z0 ÿ z1
p

e5iy=2
�
:

The integration can be carried out easily by taking into account that�aa�2p
a

einy dy � 2pd0n

where n is an integer. From this, we obtain

2G

�
@O

u1
dp2
ds

ds � ÿ 1

4�1� k�
�
k�J1 ÿ iJ2��3KII ÿ iKI� � �3J1 ÿ iJ2��KII ÿ iKI�

�

2G

�
@O

p1
du2
ds

ds � 1

4�1� k�
��J1 ÿ iJ2��3KII ÿ iKI � � k�3J1 ÿ iJ2��KII ÿ iKI�

�
and, therefore,
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I � Re

�
@O

ÿ
u2T1 ÿ u1T2

�
ds � J1KI � J2KII:

The fundamental solution given by Eq. (36) can help us to calculate the weight function for any crack
geometry and boundary conditions. The weight function can be written as h � v� u1, where v is a
simple crack solution with boundary conditions given. Those boundary conditions are determined such
that h is stress free along the crack and on the regions of the external boundary where displacements are
unknown in the original problem (u2), h also has clamped displacements on the remaining regions of the
external boundary (where tractions are unknown in the original problem). (see Aparicio and Atkinson,
1997 for more details about this procedure).

12. Conclusions

We have de®ned elastic analytic functions, that is, functions of the kind u: C4C2 that obey Eqs. (4)
and (5). We have established that the real and imaginary part of the ®rst complex component satisfy the
Navier equation of plane elasticity (homogeneous, linear and isotropic) and the real and imaginary part
of the second complex component behave like a traction potential (its derivative along a line is
proportional to the applied tractions on it) and satisfy the Navier equation for plane strain with a
Poisson coe�cient equal to unity.

Algebraical operations have been de®ned such that the set of elastic analytic functions constitutes a
commutative algebra over the real ®eld and a module over the set of analytic functions. Additionally, a
derivative and an integral have been de®ned such that they will interact with elastic analytic functions
like complex di�erentiation and integration do with normal analytic functions. We have in particular
that the elastic integral around a contour, enclosing a region where the integrand is elastic analytic,
vanishes. We also have derived a formula similar to the Cauchy integral formula and Plemelj formulae
for elastic analytic functions. Finally we have established that path independent integrals of the J-type
(that is, path independent integrals that can be derived from Noether's theorem whose integrand only
depends on the position and derivatives of the displacements) can be written as the elastic integral of an
elastic analytic function.

Elastic complex analysis can provide additional tools in the resolution of two dimensional elastostatic
problems in linearly homogeneous and isotropic media. It can be particularly useful in two dimensional
problems involving cracks since the Cauchy integral formula for elastic analytic functions is a weak
version of Somigliana integral formula with a Cauchy type singularity and has the equivalent of Plemelj
formulae. The method used in Aparicio and Atkinson to determine numerically a weight function for a
curved crack is based on this. Elastic complex analysis provides an easier and natural notation as well as
a better understanding of the procedure for the method described in the above paper. Elastic complex
analysis also provides a better understanding of the theory behind path independent integrals in two
dimensional elasticity.
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Appendix A. Derivation of the inverse formula (18)

Let L be an open smooth oriented curve not intersecting itself that goes from z1 to z2, let g be a
complex function de®ned as

g�z� � �zÿ z2�
�������������
zÿ z1
zÿ z2

r
,

where the branch cut of the square root has been chosen to be along L. Let uj � �uj, pj � be a function
uj: L4C that satis®es the HoÈ lder condition on L such that u� p vanishes at the end points of L, is
di�erentiable on L and its derivative satis®es the HoÈ lder condition on L. It is the aim of this section to
®nd a closed form inversion formula for the integral equation

ua�z0, z0� � 1

2p
PV

�
L

uj�z, �z� �z
z0

�
1

zÿ z0

�
� dz:

Let us de®ne the function

q�z0, z0� � u�z0, z0� �z0 g�z0 � �
�
1

2p

�
L

uj�z, z� �z
z0

�
1

zÿ z0

�
� dz

�
�z0 g�z0�

q is a function which is elastic analytic in Cÿ L: We can therefore apply to it formula (15) in a region
surrounded by a contour L1 that encloses L in the clockwise direction and a circular contour LE

centered at some point near L and a large radius E: The result is�
L

q� �z
z0

�
1

zÿ z0

�
� dzÿ

�
L

qÿ�z
z0

�
1

zÿ z0

�
� dz

�
�
LE

q�z
z0

�
1

zÿ z0

�
� dz � 2pq�z0, z0� �A1�

The integral on the right-hand side of Eq. (16) has a Cauchy type singularity, and hence, u�z, �z� is of
order O�1=z� as z41: Since g�z� is of order O�z� as z41, we conclude that �q�z, �z� is of order O�1� as
z41: This means that the last integral in the above equation tends to a constant A as E41: By
noting that

q� ÿ qÿ � u� � g� ÿ uÿ � gÿ � �u� � uÿ� � g� � 2ua � g�

since gÿ � g�, we obtain from (A1)�
L

�2ua � g�� �z
z0

�
1

zÿ z0

�
� dz� A � 2p�u� g��z0, z0�:

Using Eq. (17), we establish that

2p
u� � g� � uÿ � gÿ

2
� PV

�
L

�2ua � g�� �z
z0

�
1

zÿ z0

�
� dz� A,

and since u� � g��uÿ � gÿ�uj � g� we obtain
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�uj � g���z0, z0 � � 2

p
PV

�
L
�ua � g�� �z

z0

�
1

zÿ z0

�
� dz� A:

Eq. (18) follows from the above equation by multiplying it by 1=g�:
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